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Background: Morphologic description of ventricular septal defect (VSD) is mandatory before performing the
newly developed transcatheter closure procedure. Inaccurate estimation of defect size has been reported
using conventional two-dimensional (2D) transthoracic echocardiography (TTE). The aim of this study was
to assess VSD morphology and size using three-dimensional (3D) TTE compared with 2D TTE and surgery.

Methods: Forty-eight children aged 21.4 + 29.3 months with isolated muscular (n = 11 [22.9%]) and membra-
nous (n = 37 [77.1%]) VSDs were prospectively included. Three-dimensional images were acquired using full-
volume single-beat mode. Minimal diameter, maximal diameter, and systolic and diastolic VSD areas were
measured from 3D data sets using multiplanar reconstruction mode (QLAB 9). Maximal-to-minimal VSD diam-
eter ratio was used to assess VSD geometry. Linear regression analysis and the Bland-Altman method were
used to compare 3D measurements with 2D and surgical measurements in a subgroup of 15 patients who
underwent surgical VSD closure.

Results: VSD 3D diameters and areas were measured in all patients (100%; 95% CI, 92.6%-100%). Maximal
diameter was lower on 2D TTE compared with 3D TTE (7.3 vs 11.3 mm, P < .0001). Mean bias was 4 mm, with
95% of values ranging from —1.76 to 9.75 mm. Correlation between 3D maximal diameter and surgical diam-
eter was strong (r2 = 0.97, P < .0001), while correlation between maximal 2D diameter and surgical diameter
was moderate (2 = 0.63, P < .0001). VSDs had an oval shape when assessed by 3D TTE. Maximal-to-minimal
diameter ratio assessed by 3D TTE was significantly higher in muscular VSDs compared with membranous
VSDs (8.20 = 1.51 vs 2.13 = 1.28, respectively, P = .01). VSD area variation throughout the cardiac cycle
was 32% and was higher in muscular compared with membranous VSDs (49% vs 26%, P = .0001).

Conclusions: Three-dimensional TTE allows better VSD morphologic and maximal diameter assessment
compared with 2D TTE. VSD shape and its changes during the cardiac cycle can be visually and quantitatively
displayed. Three-dimensional echocardiography may thus be particularly useful before and during percuta-
neous VSD closure. (J Am Soc Echocardiogr 2016; Il :Il-H.)
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Indications for surgical closure of congenital ventricular septal defects
(VSDs) are based on pulmonary pressure and left ventricular volume
overload. Two-dimensional (2D) transthoracic echocardiography
(TTB) is usually sufficient to assess the anatomy and hemodynamics
of a VSD and guide clinical management.'” Recently, percutaneous

From the Pediatric Cardiology Unit (K.H., S.H., R.A., C.K., Y.D., P.A)) and the
Cardiac Surgery Unit (F.C., B.L.), Children Hospital, CHU, Toulouse, France;
and Inserm UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires,
Toulouse, F-31000, France (C.K., S.H.).

Reprint requests: Khaled Hadeed, MD, Pediatric Cardiology, Children’s Hospital,
330 Avenue de Grande Bretagne, TSA 70034, 31059 Toulouse Cedex 9, France
(E-mail: hadeed.k@chu-toulouse.fr).

0894-7317/$36.00

Copyright 2016 by the American Society of Echocardiography.
http://dx.doi.org/10.1016/j.echo.2016.04.012

closure of muscular as well as membranous VSDs using different
devices has emerged as an alternative to the surgical technique
in selected cases’® An accurate assessment of the size and
morphology of a VSD is of crucial importance in these cases for
device choice. Morphologic assessment of VSD, its diameters, and
its dynamic variation throughout the cardiac cycle are difficult to
achieve from sequential cuts of one plane by 2D TTE.*”"'° We and
others have reported that three-dimensional (3D) TTE is useful to
describe the size, morphology, and dynamic morphology variation
of intracardiac defects such as atrial septal defects in children.'"!'”
Thus, we hypothesized that 3D TTE would also be useful to assess
VSD morphology and size in these population. Our aim was to
compare the 3D measurement of VSDs with that by 2D TTE and
with surgical findings in a pediatric population. We also aimed to
describe and compare the shapes of membranous and muscular
VSDs throughout the cardiac cycle using 3D TTE.
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3D = Three-dimensional Study Design

We performed a prospective
single-center study including 48
unselected children with isolated
membranous or muscular VSDs.
Patients with multiple VSDs and
patients with other congenital
cardiovascular abnormalities were
not included. The study was approved by our institutional review com-
mittee, and informed consent was obtained from each patient or his
or her legal representative.

TTE = Transthoracic
echocardiography

2D = Two-dimensional

VSD = Ventricular septal
defect

Echocardiographic Assessment

Two-dimensional TTE was used first to assess VSD size.
Measurements were obtained from two orthogonal planes (long-
and short-axis views) on the end-diastolic frames. The largest diameter
of these two orthogonal diameters was considered the maximal 2D
diameter and the smallest the minimal 2D diameter. A 3D full-
volume single-beat data set was then acquired GE33; Philips
Medical Systems, Andover, MA) using X5-1 or X7-2 matrix probes
(Philips Medical Systems). The data set was stored digitally and trans-
ferred to a workstation (QLAB 9; Philips Medical Systems) for offline
analysis. All measurements from 3D data sets were independently
performed by another operator, who was unaware of the results of
2D TTE.

The 3D data set analysis was performed using multiplanar recon-
struction mode. Each of the three axes was moved to obtain a plane
along the ventricular septum including the whole VSD from the en
face view (Figure 1, Video [; available at www.onlinejase.com). The
two orthogonal diameters of the VSD were measured from this
view on the end-diastolic frames. The largest diameter was considered
the maximal 3D diameter and the smallest the minimal 3D diameter.
The ratio of maximal to minimal 2D and 3D VSD diameters was
calculated. Systolic and diastolic VSD areas were also obtained by
delineating the outline of the VSD on the end-systolic and end-
diastolic frames, respectively. The variation of the VSD surface area
throughout the cardiac cycle was calculated as (diastolic VSD
area — systolic VSD area)/diastolic VSD area and expressed as a
percentage. All measurements were obtained from the right-sided
surface of the VSD.

Surgical Measurements

In 15 children (31.3%; 95% CI, 18.7%-46.3%) who underwent
surgical VSD closure, the defect was examined by the surgeon
from the right ventricular side through a standard right atrial opening.
The maximal diameter of the VSD was measured directly by the
surgeon.

Statistical Analysis

Quantitative variables are expressed as mean = SD. Body
surface area was calculated according to the Mosteller formula.
Comparisons between measurements were performed using paired
t tests or Wilcoxon signed rank test. Paired ¢ tests were used when
variables were normally distributed and after the homogeneity of
variance was checked. The Shapiro-Wilk test was used to test the
normality of distribution. The Levene test was used to assess the
homogeneity of variance. When these conditions were not satisfied,
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a nonparametric Wilcoxon test was used. Correlations between nor-
mally distributed variables were assessed using the Pearson test.
Otherwise, a Spearman correlation coefficient was estimated.

A linear regression plot analysis expressing 3D diameters according
to 2D diameters was performed for the whole population and among
subgroups according to the position of the defect. The same method
was applied to display 2D and 3D diameters according to surgical
findings. The Bland-Altman method was used to further explore
agreement between the two techniques.”” P values < .05 were
considered to indicate statistical significant. Statistical analysis was per-
formed using Stata version 8 (StataCorp LP, College Station, TX).

RESULTS

Study Population

Forty-eight patients with isolated VSDs were included. VSDs were
membranous in 37 patients (77.1%) and muscular in 11 (22.9%).
Surgical VSD closure was performed in 15 patients (31.3%).
Characteristics of the whole study population and of subgroups
according to the position of the defect are reported in Table 1. The
mean age of the study population was 21.4 = 29.3 months (range,
1-123 months). There was a trend toward younger children in the
muscular VSD group.

VSD Measurements on 2D and 3D TTE

Acquisition of a 3D volume data set and measurements were feasible
in all children (100%; 95% ClI, 92.6%-100%). The mean obtained 3D
image resolution was 30 MHz (range, 22-35 MHz).

VSD measurements using 2D and 3D TTE in the whole study pop-
ulation and among subgroups according to the position of the defect
are reported in Table 2. Maximal and minimal VSD diameters were
not significantly different between the two subgroups.

Correlation between maximal 3D and 2D diameters was moder-
ate (Spearman correlation coefficient = 0.51, P < .001). Correlation
between minimal 3D and 2D diameters was good (Spearman corre-
lation coefficient = 0.75, P<.0001). Linear regression plots express-
ing 3D diameters according to 2D diameters are displayed in Figure 2
for the whole population and among subgroups according to the
position of the defect. Minimal 3D and 2D diameters were well corre-
lated (* = 0.77, P < .0001). Correlation between 3D and 2D
maximal diameters was significant, but the strength of the correlation
was low (# = 0.29, P < .0001). Correlation between 3D and 2D
maximal diameters was better in membranous versus muscular
VSDs (*=0.46 vs * = 0.11). Correlations between 3D and 2D min-
imal diameters remained very good in membranous and muscular
VSDs (= 0.72 and * = 0.90).

Maximal diameter assessed by 2D TTE was lower than by 3D TTE
(P<.0001). Bland-Altman analysis confirmed a mean bias of 4 mm.
The magnitude of intertechnique differences observed for individual
patients was quite high; 95% of values ranged from —1.76 to
9.75 mm. Mean bias was higher in muscular compared with membra-
nous VSDs (6.02 vs 3.39 mm, respectively) (Figure 3).

Although VSD minimal diameter was significantly lower by 2D
TTE compared with 3D TTE (P =.001), the difference was less pro-
nounced. Mean bias was low, with a mean difference of 0.44 mm
(Figure 3). The magnitude of intertechnique differences observed
for individual patients was quite low; 95% of values ranged from
—1.80 to 2.69 mm. Trends were similar with regard to membranous
and muscular subgroups.
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Figure 1 Multiplanar reconstruction (MPR) analysis. Diameters and areas of membranous (A) and muscular (B) VSDs (arrows) using
MPR mode. The red axis was positioned along the interventricular septum to obtain a red plane including the whole VSD. Minimal and
maximal VSD diameters were measured on this plane, and VSD area was delineated. AV, Aortic valve; LA, left atrium; LV, left ventricle;

RV, right ventricle; TV, tricuspid valve.

Table 1 Characteristics of the study population

Muscular Membranous

VSD (n =11 VSD (n =37
All (n = 48) [22.9%]) [77.1%]) P
Age (mo) 21.4 = 29.3 10.4 = 18.9 24.7 =313 .06
Weight (kg) 93=*+73 6.8 = 4.8 10.0+ 7.8 .07
Height (cm) 74.3 £ 241 65.0 = 18.8 771 £25.0 .10
BSA (m2) 0.4 +0.2 0.3 *=0.2 04 *+0.2 .07

Surgical VSD n =15 (31.3%) n=4(36.4%) n=10(27.0%)
closure

BSA, Body surface area.
Data are expressed as mean = SD or as number (percentage).

VSD Measurements by Echocardiography Compared with
Surgical Findings

VSD maximal diameters obtained by 2D and 3D TTE in 15 patients
who underwent surgical repair were compared with surgical findings
(summarized in Table 3). Surgical and 3D diameters were not signif-

icantly different from and higher than 2D diameters. Correlation be-
tween maximal 3D and surgical diameters was excellent (Spearman
correlation coefficient = 0.98, P < .0001). Correlation between
maximal 2D and surgical diameters was good (Spearman correlation
coefficient=0.73, P<.01). Linear regression analysis of surgical diam-
eter measurements confirmed an excellent correlation with maximal
3D diameter (* =0.97, P<.0001). Bland-Altman analysis confirmed
the lack of any significant bias. The mean difference between surgical
and 3D measurements was 0.25 mm, with 95% of values ranging
from 1.35 to 0.85 mm. The correlation between surgical diameter
and 2D maximal diameter was lower (** = 0.63, P < .0001). The
mean maximal 2D diameter was significantly lower than mean surgi-
cal measurements (P<<.001). The mean bias by Bland-Altman analysis
was 3.71 mm, with 95% of values ranging from —7.85 to 0.43 mm
(Figure 4).

VSD Morphology

Maximal-to-minimal VSD diameter ratio was used to assess VSD
geometry. Therefore, a ratio of 1 represents a perfect circle, while
a progressively higher ratio represents a more elliptical geometry.
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Table 2 VSD measurements by 2D and 3D TTE in the whole study population and in subgroups according to defect position

All (n = 48) Muscular VSD (n = 11) Membranous VSD (n = 37) P
2D TTE
Maximal diameter (mm) 73x24 6.0 x25 7.7+23 .06
Minimal diameter (mm) 51x20 42 £22 54+19 .05
Maximal-to-minimal diameter ratio 1504 1.5+03 1.5+05 .48
3D TTE
Maximal diameter (mm) 11.3 = 3.3 121 £ 3.0 111 =34 .20
Minimal diameter (mm) 56 22 45+ 21 59+ 21 .07
Maximal-to-minimal diameter ratio 23x14 32x15 2113 .01
dVSDA (cm?) 0.6 = 0.3 0.5+ 0.4 0.6 = 0.3 .51
SVSDA (cm?) 0.4 +0.3 0.3+0.2 0.4 +0.3 .05
Surface area variation (%) 32 + 15 49 + 11 26 + 12 <.001

dVSDA, Diastolic VSD area; sVSDA, systolic VSD area.
Data are expressed as mean = SD.

VSDs had an oval shape when assessed by 3D TTE. The mean
maximal-to-minimal diameter ratio was higher by 3D TTE than
2D TTE. Maximal-to-minimal diameter ratio assessed by 3D TTE
was significantly higher in muscular VSDs compared with membra-
nous VSDs (3.20 = 1.51 vs 2.13 = 1.28, respectively, P = .01)
(Figure 5).

VSD Measurement Variation during the Cardiac Cycle

Diastolic VSD area was higher than systolic VSD area (0.6 = 0.3 vs
0.4 = 0.3 mm, P<.0001). VSD area variation during the cardiac cycle
was 32 = 15%. It was significantly higher in muscular compared with
membranous VSDs (49 = 11% vs 26 * 12%, P<.001). Figure 6 dis-
plays 3D en face views of membranous (Figure 6A) and muscular
(Figure 6B) VSDs in systole and diastole illustrating variation
throughout the cardiac cycle (Videos 2 and 3; available at www.
onlinejase.com).

Interobserver Variability

Three-dimensional transthoracic echocardiographic measurements of
VSD:s performed by two blinded observers did not differ significantly.
The coefficients of variation for interobserver variability were 3%
95% CI, 1.4%-4.6%) for maximal 3D diameter and 5.5% (95%
ClI, 2.5%-8.5%) for VSD area.

DISCUSSION

Our study illustrates some advantages of 3D TTE and some limita-
tions of 2D TTE in the assessment of VSD shape and size in chil-
dren. Assessment of VSDs is usually done using 2D TTE, which
often provides enough information for patient management.'
However 2D TTE lacks the ability to display the entire shape of a
defect in a single plane. Two-dimensional measurements are usu-
ally made in two orthogonal planes to assess VSD morphology.
The maximal length and breadth of a defect are not easily obtained
in standard views. Moreover, accurate sizing by 2D TTE using a sin-
gle plane is even more difficult given the dynamic changes in VSD
size in a beating heart during the cardiac cycle. High feasibility and

accuracy of 3D TTE to assess VSDs have been recently reported
and confirmed in our work." In this study, we used a single-beat
3D acquisition to avoid stitching artifacts secondary to respiration,
probe translation, and heart motion variation, which are difficult to
avoid in young children. Image quality and resolution were accept-
able to analyze VSDs. The shape of a VSD and its dynamic motion
throughout the cardiac cycle can be displayed using 3D-unique en
face views.'® '8 In our study, measurements of VSD dimensions by
echo-cardiography were performed from the right ventricular side
to be in agreement with surgical measurements. Surgical sizing was
performed on an empty, flaccid heart which usually has been
arrested by cardioplegia after the institution of bypass. However,
we found a close correspondence between maximal diameter
obtained by 3D TTE and maximal surgical diameter. This
confirms the high accuracy of 3D TTE for VSD sizing. On the
other hand, we observed that 2D TTE underestimates maximal
defect size compared with 3D TTE and surgical findings. This
observation may be because the 2D transthoracic
echocardiographic method is based on the short-axis plane, in
which the ultrasound beams may not be perfectly parallel to the
maximal axis of the defect. This limitation had greater impact
when the defect was more oval shaped, with a higher maximal-
to-minimal diameter ratio, as in muscular defects. Our study is
the first to compare both minimal and maximal diameters between
2D and 3D TTE. Chen et al.'” reported a good correlation between
VSD diameters obtained by 2D and 3D TTE with surgical findings.
However, they only used the diameter derived from the four-
chamber view by 2D TTE, which corresponds to the minimal diam-
eter in our study. Van den Bosch et al.>® used only maximal 2D
diameter compared with 3D TTE and surgical findings. They
showed that there was a weak correlation between maximal 2D
and 3D diameters and between maximal 2D and surgical findings.
Our results unify these discrepancies, confirming good correlation
between minimal 2D and 3D diameters and underestimation of
maximal VSD diameter by 2D. Cheng et al.'® also found that defect
sizes obtained by 3D TTE had better correlation with surgical find-
ings than those obtained by 2D TTE.

A new understanding of measurement differences between the
two imaging methods, and according to VSD location, was offered
by analysis of VSD shape using 3D TTE. VSD morphology could be
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Figure 2 Linear regression analysis plotting VSD diameters estimated by 3D versus 2D TTE in the whole population and in subgroups
according to VSD position. Dashed lines represent lines of identity, and solid lines represent linear regression.

depicted in all cases. VSDs were oval rather than round in shape, as
assessed quantitatively by maximal-to-minimal diameter ratio. The
minimal diameter was always in the long-axis orientation, while the
maximal diameter was in elevation orientation. The maximal-to-
minimal diameter ratio was underestimated by 2D TTE compared
with 3D TTE because of maximal VSD diameter discrepancies.
The maximal-to-minimal diameter ratio was more pronounced
and highly variable in muscular VSDs. VSD shape can be very
different, ranging from oval or crescent-shaped to slit-shaped
defects.

Moreover, VSD measurements vary significantly during the car-
diac cycle. Real-time 3D en face views offer a direct visualization of
VSD shape motion from either the left or right ventricle. We quan-
tified measurement variation using 3D TTE. The mean variation
of VSD surface area during the cardiac cycle was 32 = 15%, less
than previously described by our team for atrial septal defects
(68 = 15%). Area variation was greater in muscular defects than
in membranous defects. Muscular defects are surrounded in their
entire circumference by muscular contractile tissues, while mem-
branous defects are bordered at their upper parts by fibrous aortic
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Figure 3 Bland-Altman graphs comparing VSD diameters obtained by 2D and 3D TTE in the whole population and in subgroups

according to VSD position. Solid lines represent average differences, and dashed lines represent 95% limits of agreement.

Table 3 VSD maximal diameters by 2D TTE, 3D TTE, and surgery in patients with surgical VSD closure

2D TTE (n = 15) 3D TTE (n =15) Surgical (n = 15) P
Maximal VSD 8523 11.9 £ 34 12.2 = 3.4 2D TTEvs 3D TTE 2D TTE vs surgery 3D TTE vs surgery
diameter (mm) <.0001 <.001 .07

Data are expressed as mean *= SD. P values by Wilcoxon signed rank test.

annular tissues,
have an impact

VSD occurs mainly during systole, and VSD measurements may
be interesting in this cardiac phase.

which are not contractile. This observation may
on shunt severity assessment. Shunting across a

Recently introduced catheter-based techniques for device

closure of VSDs require accurate measurements of the defects
to choose the appropriate device, increase the success rate,
and reduce complications.®?!*?> Some of these complications
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Figure 6 Right ventricular 3D transthoracic echocardiographic en face view of a membranous (A) and a muscular (B) VSD surface
area (arrows) displaying variation of morphology during the cardiac cycle. Dia, Diastole; PV, pulmonary valve; Sys, systole;

TV, tricuspid valve.

may be related to underestimation of defect size by 2D
echocardiography’®; others may have been caused by the
use of an oversized device. Several devices of variable configura-
tion are available actually for the percutaneous closure of
VSDs.>*?*  Three-dimensional echocardiography could be
useful in the selection of the appropriate occlusion device
configuration according to VSD morphology.”?* However, in
this study we did not evaluate this potential application, and
further studies are needed to determine the value of this
approach.

Study Limitations

The main limitation of our study was the small size of the surgical
group. Surgical sizing is considered the gold standard. However,
only children with pulmonary arterial hypertension and/or heart
failure symptoms were treated surgically at the time of study.
Despite the small number, there was a close correspondence
with 3D transthoracic echocardiographic measurements (statisti-
cally significant).

CONCLUSIONS

Three-dimensional echocardiography is useful to assess measure-
ments and shapes of VSDs in children. It allows better
VSD morphologic and maximal diameter assessment compared
with 2D echocardiography. Irregularity of VSD shape and
its changes during the cardiac cycle can be visually and quantita-
tively displayed. Three-dimensional echocardiography may be
particularly useful before and during percutaneous closure of
VSDs.

SUPPLEMENTARY DATA

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.ech0.2016.04.012.
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