Predicting fluid responsiveness in children following congenital heart surgery: what about electrical cardiometry?

Angele Boet¹*, Emir Mokhfi¹, Michel Hamann¹, Mohammed Ly², Emmanuel Lebret², Regine Roussin², Serge Demontoux¹, Jurgen Horer².

1 Congenital heart defect: critical care unit,
2 Congenital heart defect: surgery unit,
South Paris University Hospitals, Surgical Center Marie Lannelongue, 92350 Le Plessis Robinson
Background

• Hot topic:
 – Haemodynamic evaluation
 • Fluid/load management
 – Infants: IVC and SVV

• Non invasive
 – Echocardiography (US)

• Non invasive AND continuous
 – Electrical cardiometry
 • As accurate as US

Noori 2012
Grollmuss 2014
Electrical cardiometry

• Bio-impedance
 – Alternating electric current through thorax
 – High frequency, low intensity
 – Non invasive and continuous
• Bernstein-Osypka equation

\[SV = \frac{V_{tmv}}{\xi^2} \cdot \sqrt{\frac{(dz/dr)_{max}}{Z_0}} \cdot ET_\alpha \]
What about SVV?

Lee 2014

- SVV NICOM vs θ Peak Ao echo
- 26 children post VSD: 10ml/kg (=↑15% SV)
- AUC responders:
 - 0.956 θ peak Ao echo (19 vs 9%)
 - 0.888 SVV (13 vs 8%)
- Younger (23 vs 33 months)

Vergnaud, 2014

- SVV et Svi
- NICOM vs echo
- 30 post neuro surgery: 20 ml/kg Plasmion
 - 15 R/15NR

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>Cut off</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVV</td>
<td>0.81</td>
<td>>10%</td>
</tr>
<tr>
<td>SVi</td>
<td>0.88</td>
<td><29mL/m²</td>
</tr>
</tbody>
</table>

Cut off 10% SVV et 14% echo
Goal

- Predict fluid responsiveness
 - New device
 - Non invasive
 - Critical period
 - Continuous
 - Fluid goal/ response to volume expansion (VE)
 - Who?
 - Efficiency?
 - Cut-off values?
Design and Methods

- Prospective, observational
 - Post operative patients
 - Open / closed heart surgery
 - Invasive and non invasive devices

- Parameters:
 - Electrical cardiometry: SV, CO, SVV, ICON
 - Echocardiography
 - Invasive blood pressure
 - CVP
 - Left auricular pressure
 - Pulse oxymetry curve respiratory variations

- Responders to volume expansion had an increase in SV of at least 15%

- Results are median (interquartile).

 Teboul 2004
Results (1)

- 37 patients
- 20 volume expansion

<table>
<thead>
<tr>
<th></th>
<th>N=37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open heart</td>
<td>23</td>
</tr>
<tr>
<td>Age (months)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2-150</td>
</tr>
<tr>
<td>Weight (kilograms)</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>4.2-43</td>
</tr>
<tr>
<td>Size</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>55-157</td>
</tr>
<tr>
<td>Responders</td>
<td>11</td>
</tr>
</tbody>
</table>
Results (2)

• Before VE:
 – SV weight index: 1.48(0.26) vs 1.03(0.28) p=0.04
 • AUC: 0.778
 – SVV: 14(2.4) vs 18(3.9) p=0.05
 • AUC 0.767

Figure 1: ROC curves

All others: not significant, low AUC
Results (3)
Larger cohort

- 90 patients
 - 6.5 months (44), 6.4 kg (9.8)
 - 46 had VE
 - patients younger (3 vs 15.5 months) and low weight (5.2 vs 8.2 kg, p=0.0099) in VE group

- VE vs no VE:
 - SVV: 18% (9) vs 10% (5) p<0.0001
 - AUC 0.809 and cutoff 13% (p<0.0001)

- Responders vs non responders:
 - SVV: 20%(8) vs 15.5% (7) p=0.009
 - AUC 0.696 and cutoff 19% (p=0.015)
Discussion

• Similar accuracy US
 – Non-invasive
 – Operator-independent
 – Easy handling
 – Continuous
 • Without moving patient!

• Better / as accurate as invasive devices for fluid management?
• Population needing VE: younger patients?

• Study limitations
 – Population
 • One center
 • Relatively small
 – Heterogeneous
 – First one with this device on this population!
Conclusion

• EC is an interesting technique
• Overestimation
• Early detection of changes

• Noninvasive SVV and SV on ICON®:
 – Reliable data to guide fluid management
 – Preliminaries data

• Larger cohort
• Neonatology
• SMUR

Squara 2007